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Motivation
❖ Definition: Gradient Descent (GD)

➢ Optimization method over parameter space based on 
stochastic exploration of local gradients. (fig 1)

❖ Challenge: 
➢ Near minimum, step size may not fit the landscape 

and will blow up after too many iterations. (fig 2)

❖ Solution: 
➢ Efficiently adapt step size as gradient nears zero 

allowing for optimal fit in least computation steps 
required.

❖ Value: Saves time and quantum resources during hybrid 
computation.

fig (1) - Gradient Descent Steps in 2D 
parameter space.

fig (2) - QNGD optimizers with varying 
sensitivity (λ),  proportional to step 
size.



Quantum Natural Gradient Descent: Schematic
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❖ Def. Quantum Natural Gradient Descent is an optimization techniques that 
operates on the complex projective space and utilizes the Quantum Fisher 
Information or Fubini-Study metric.

Qiskit Proposed: Adaptive Step Size

Implements regularization 
techniques (Ridge, Lasso) to 
find a suitable  parameter(s) of 
quantum circuit.

Dynamically adjust step size. 
The technique choses a larger 
step whenever possible, and, as 
a result, convergence reaches 
faster. 

Quantum Natural Gradient Descent: State-of-the-art



where    

❖ Given current parameter θ and maximum allowed step-size β, find out  k  such that  

❖ Once k is found, adopt λ as the new step-size and update parameters as 

Backtracking Line Search for Step Size Optimization



❖ We reproduced demonstrated experiments to find the ground state energy of H2, LiH, 
and TFI model using modified optimizers.

H2  molecule LiH molecule

Project Accomplishments

❖ We identified potential implementation vehicles in Qiskit.
➢ We found the NaturalGradient (NG) class to be a prime candidate. 



Direction & Developments
❖ Primary Goal:

➢ Introduce Adaptability to the NaturalGradient class with backtracking line 
search based on the Armijo condition.

➢ 1. Validation:
■ Comparative study of QNGD and AQNGD in noisy and noiseless 

environments.

➢ 2. Implementation:
■ We intend to offer a simple integer hyperparameter, adaptivity,  to 

indicate with what frequency the steps are optimized. 
■ I.e. if 1 is passed, this means each step is adapted.

❖ After writing tests and experiments, we will propose our project to IBM. 
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